17-1 INTRODUCTION TO THE PENTIUM Il MICROPROCESSOR 551

TABLE 17-2 Power supply voltages that must be applied to Vcc as

requested by the VID pins.
ViD4 VID3 viD2 VIiD1 VIDO Vee

0 0 0 (] 0 205V

0 0 0 0 1 200V

0 0 0 1 0 195V

0 0 0 1 1 190V

0 0 1 0 0 185V

0 0 1 (o] 1 1.80V

0 0 1 1 0 —

0 0] 1 1 1 -

0 1] 0 0 —

0 1 0 0 1 —

0 1 0 1 0 —

0 1 0 1 1 —

0 1 1 0 0 —

0 1 1 0 1 —

0 1 1 1 0 —_

0 1 1 1 1 —

1 0] 0 0 0 35V

1 0 0 0 1 34V

1 0 0 1 0 33V

1 0 0 1 1 32V

1 0 1 0 0 31V

1 0 1 0 1 30V

1 0 1 1 (0] 29V

1 0 1 1 1 28V

1 1 0 0 0 27V

1 1 0 0 1 26V

1 1 0] 1 0 25V

1 1 0 1 1 e 24V

1 1 1 0 0 23V

1 1 1 0] 1 22V

1 1 1 1 0 21V

1 1 1 1 1 —
THERMTRIP Thermal sensor trip is an output that that becomes a zero when the temperature of the

Pentium II exceeds 130°C.
™S The test mode select input controls the operation of the Pentium in test mode.
TRDY Target ready is an input that is used to cause the Pentium II to perform a write-back
operation.

VID4-VIDO Voltage data output pins are either open or grounded signals that indicate what supply

voltage is currently required by the Pentium II. The power supply must apply the
request voltage to the Pentium II, as listed in Table 17-2.

552 CHAPTER 17 THE PENTIUM iI, PENTIUM 111, AND PENTIUM 4 MICROPROCESSORS

The Memory System

The memory system for the Pentium II microprocessor is 64G bytes in size, just like the Pentium Pro micro-
processor. Both microprocessors address a memory system that is 64 bits wide with an address bus that is 36 bits
wide. Most systems use SDRAM operating at 66 MHz or 100 MHz. The SDRAM for the 66 MHz system has an
access time of 10 ns and the SDRAM for the 100 MHz system has an access time of 8 ns. The memory system,
which connects to the chipset, is not illustrated in this chapter. Refer to Chapter 18 to see the organization of a 64-
bit wide memory system without ECC. '

The Pentium II memory system is divided into eight or nine banks that each store a byte of data. If the ninth
byte is present, it stores an error checking code (ECC). The Pentium II, like the 80486-Pentium Pro, employs in-
ternal parity generation and checking logic for the memory system’s data bus information. (Note that most Pen-
tium II systems do not use parity checks, but it is available.) If parity checks are employed, each memory bank
contains a ninth bit. The 64-bit wide memory is important to double-precision floating-point data. Recall that a
double-precision floating-point number is 64 bits wide. As with the Pentium Pro, the memory system is numbered
in bytes from byte 000000000H to byte FFFFFFFFFH. Please note that none of the current chip sets support more
than 1G bytes of system memory, so the additional address connections are for future expansion. Figure 17-3 il-
lustrates the basic memory map of the Pentium II system, using the AGP for the video card.

The memory map for the Pentium II system is similar to the map illustrated in earlier chapters, except that
an area of the memory is used for the AGP area. The AGP area allows the video card and Windows to access the
video information in a linear address space. This is unlike the 128K-byte window in the DOS area for a standard
VGA video card. The benefit is much faster video updates because the video card does not need to page through
the 128K-byte DOS video memory.

Transfers between the Pentium II and the memory system are controlled by the 440LX or 440 BX chipset.
Data transfers between the Pentium II and the chipset are eight bytes wide. The chipset communicates to the mi-
croprocessor through the five REQ signals, as listed in Table 17-3. In essence, the chipset controls the Pentium II,
which is a departure from the traditional method of connecting a microprocessor to the system directly to the
memory. ‘

The Pentium II connects only directly to the cache, which is on the Pentium II cartridge. As mentioned, the
Pentium II cache operates at one-half the clock frequency of the microprocessor. Therefore, a 400 MHz Pentium

TABLE 17-3 The request (REQ) signals to the Pentium II.

REQ4-REQO Name " Comment

00000 Deferred reply Deferred replies are issued for previously
deferred transactions

00001 Reserved Future use

00010 Memory read & invalidate Memory read from DRAM or PCI write to
DRAM from PCI

00011 Reserved Future use

00100 Memory code read Memory read

00101 Memory write Memory write-back cycle

00110 Memory data read Memory read

00111 Memory write Normal memory write

01000 Interrupt acknowledge or Interrupt acknowledge cycle for PCI bus

special cycle

01001 Reserved Future use

10000 I/O read 1/O read operation

10001 1/O write I/O write operation

1100x Reserved Future use

17-1 INTRODUCTION TO THE PENTIUM Il MICROPROCESSOR 553

64G
Future Expansion A
4G PCl access to AGP
Registers
PCl access to AGP
Frame Buffer
- p— — PCl Memory
APG Apeture
Textures and Instructions
1G
Remapped AGP Data
A4 4 — Main Memory
16M Optional ISA Memory
1
15M
M
System Area
640K — Conventional Memory
Application Area
0

FIGURE 17-3 The memory map of a Pentium li-based
computer system.

II cache operates at 200 MHz. The Pentium II Xeon cache operates at the same frequency as the microprocessor,
which means that the Xeon, with its 512K, 1M, or 2M cache, outperforms the standard Pentium II.

Input/Output System

The input/output system of the Pentium II is completely compatible with earlier Intel microprocessors. The I/O port
number appears on address lines A15-A3 with the bank-enable signals used to select the actual memory banks used
for the I/O transfer. Transfers are controlled by the chipset, which is a departure from the standard microprocessor ar-
chitecture before the Pentium II.

554 CHAPTER 17 THE PENTIUM I, PENTIUM Iil, AND PENTIUM 4 MICROPROCESSORS

Beginning with the 80386 microprocessor, I/O privilege information is added to the TSS segment when the
Pentium II is operated in the protected mode. Recall that this allows /O ports to be selectively inhibited. If the
blocked I/O location is accessed, the Pentium II generates a type 13 interrupt to signal an I/O privilege violation.

System Timing

As with any microprocessor, the system timing signals must be understood in order to interface the microprocessor,
or so it was at one time. Because the Pentium II is designed to be controlled by the chipset, the timing signals between
the microprocessor and chipset have become proprietary Intel information and are not released to the public.

17-2 PENTIUM Il SOFTWARE CHANGES

The Pentium II microprocessor core is a Pentium Pro. This means that the Pentium II and the Pentium Pro are es-
sentially the same device for software. This section of the text lists the changes to the CPUID instruction; and the
SYSENTER, SYSEXIT, FXSAVE, and FXRSTORE instructions (the only modifications to the software).

CPUID Instruction

Table 174 lists the values passed between the Pentium II and the CPUID instruction. These are changed from earlier
versions of the Pentium microprocessor.

The version information returned after executing the CPUID instruction with a logic 0 in EAX is returned in
EAX. The family ID is returned in bits 8 to 11; the model ID is returned in bits 4 to 7. The stepping ID is returned in
bits 0 to 3. For the Pentium II, the model number is 6 and the family ID is a 3. The stepping number refers to an update
number. The higher the stepping number, the newer the version.

The features are indicated in the EDX register after executing the CPUID instruction with a zero in EAX. Only
two new features are returned in EDX for the Pentium II. Bit position 11 indicates whether the microprocessor supports
the two new fast call instructions SYSENTER and SYSEXIT. Bit position 23 indicates whether the microprocessor
supports the MMX instruction set. The remaining bits are identical to earlier versions of the microprocessor and are not
described. Bit 16 indicates whether the microprocessor supports the page attribute table or PAT. Bit 17 indicates
whether the microprocessor supports the page size extension found with the Pentium Pro and Pentium II microproces-
sors. The page size extension allows memory above 4G through 64G to be addressed. Finally, bit 24 indicates whether
the fast floating-point save and restore instructions are implemented.

TABLE 17-4 CPUID instruction.

Input EAX Output Register Contents
0 EAX Maximum value for input to EAX for CPUID instruction
0 EBX ‘uneG’

0 ECX ‘Inei’

0 EDX ‘letn’

1 EAX Version number

1 EBX —_

1 ECX —

1 EDX Feature information
2 EAX Cache data

2 EBX Cache data

2 ECX Cache data

2 EDX Cache data

17-2 PENTIUM Il SOFTWARE CHANGES 555

TABLE 17-5 The model- specific registers used with SYSENTER and

SYSEXIT.

Name Number Function
SYSENTER_CS 174H SYSENTER target code segment
SYSENTER_ESP 175H SYSENTER target stack segment
SYSENTER_EIP 176H SYSENTER target instruction pointer

SYSENTER and SYSEXIT Instructions

The SYSENTER and SYSEXIT instructions use the fast call facility introduced in the Pentium IT microprocessor.
Please note that these instructions function only in ring zero (privilege level 0) in protected mode. Windows oper-
ates in ring 0, but does not allow applications access to ring 0. These new instructions are meant for operating
system software. :

The SYSENTER instruction uses some of the model-specific registers to store CS, EIP, and ESP to execute
a fast call to a procedure defined by the model-specific register. The fast call is different from a regular call be-
cause it does not push the return address onto the stack as a regular call. Table 17-5 illustrates the model-specific
register used with SYSENTER and SYSEXIT. Note that the model-specific registers are read with the RDMSR in-
struction and written with the WRMSR instruction.

To use the RDMSR or WRMSR instructions, place the register number in the ECX register. If the WRMSR
is used, place the new data for the register in EDS:EAX. For the SYSENTER instruction, you need use only the
EAX register, but place a zero into EDX. If the RDMSR instruction is used, the data are returned in the EDX:EAX
register pair. Example 17-1 illustrates a macro sequence that can be used to add the RDTSC, CPUID, RDMSR,
WRMSR, SYSENTER, and SYSEXIT instructions to a program. Some of these macro definitions can also be ob-
tained from Microsoft’s Internet Web site as an update to the MASM assembler program.

EXAMPLE 17-1
;macro sequences to add RDTSC, CPUID, RDMSR, WRMSR, SYSENTER, and SYSEXIT

RDTSC MACRO
DB OFH, 31H
ENDM

CPUID MACRO
DB OFH, OA2H
ENDM

RDMSR MACRO
DB OFH, 32H
ENDM

WRMSR MACRO
DB OFH, 30H
ENDM

SYSENTER MACRO
DB OFH, 34H
ENDM

SYSEXIT MACRO
DB OFH, 35H
ENDM

556 CHAPTER 17 THE PENTIUM I, PENTIUM Ill, AND PENTIUM 4 MICROPROCESSORS

TABLE 17-6 Selectors addressed by the SYSENTER_CS select

value.

SYSENTER_CS MSR Function
SYSENTER_CS value SYSENTER code segment selector
SYSENTER_CS value + 8 SYSENTER stack segment selector
SYSENTER_CS value + 16 SYSEXIT code segment selector
SYSENTER_CS value + 24 SYSEXIT stack segment selector

To use the SYSENTER instruction, you must first load the model-specific registers with the address of the
system entrance point into the SYSENTER_CS and SYSENTER_EIP registers. This would normally be the
address of the operating system such as Windows or Windows NT. Note that this instruction is meant as a system
instruction to access code or software in ring 0. The stack segment register is loaded with the value placed into
SYSENTER_CS plus 8. In other words, the selector pair addressed by SYSENTER_CS selector value are loaded
into CS and SS. The value of the stack offset is loaded into SYSENTER_ESP.

The SYSEXIT instruction loads CS and SS with the selector pair addressed by SYSENTER_CS plus 16 and 24.
Table 17-6 illustrates the selectors from the global selector table, as addressed by SYSENTER_CS. In addition to the
code and stack segment selector and the memory segments that they represent, the SYSEXIT instruction passes the
value in EDX to the EIP register and the value in ECX to the ESP register. The SYSEXIT instruction returns control
back to application ring 3. As mentioned, these instructions appear to have been designed for quick entrance and return
from the Windows or Windows NT operating systems on the personal computer.

To use SYSENTER and SYSEXIT, the SYSENTER instruction must pass the return address to the system.
This is accomplished by loading the EDX register with the return offset and by placing the segment address in the
global descriptor table at location SYSENTER_CS+16. The stack segment is transferred by loading the stack
segment selector into SYSENTER_CS+24 and the ESP into the ECX.

FXSAVE and FXRSTOR Instructions

The last two new instructions added to the Pentium II microprocessor are the FXSAVE and FXRSTOR
instructions, which are almost identical to the FSAVE and FRSTOR instructions. The main difference is that the
FXSAVE instruction is designed to properly store the state of the MMX machine, while the FSAVE properly
stores the state of the floating-point coprocessor. The FSAVE instruction stores the entire tag field, while the
FXSAVE instruction only stores the valid bits of the tag field. The valid tag field is used to reconstruct the restore
tag field when the FXRSTOR instruction executes. This means that if the MMX state of the machine is saved, use
the FXSAVE instruction,; if the floating-point state of the machine is saved, use the FSAVE instruction. For new
applications, it is recommended that the FXSAVE and FXRSTOR instructions should be used to save the MMX
state and floating-point state of the machine. Do not use the FSAVE and FRSTOR instructions in new applica-
tions. See Example 17-2 for macros that allow FXSAVE and FXRSTOR to be used in a program. This example
assumes direct memory addressing, only using 32-bit offset addresses.

EXAMPLE 17-2

;FXSAVE and FXRSTOR macros

FXSAVE MACRO Addr

DB OFH, OAEH, 6
DD offset Addr
ENDM

FXRSTOR MACRO Addr
DB OFH, OAEH, OEH

17-3 THE PENTIUM 1Il 557

DD offset Addr
ENDM

17-3 THE PENTIUM IlI

The Pentium III microprocessor is an improved version of the Pentium II microprocessor. Even though it is newer
than the Pentium II, it is still based on the Pentium Pro architecture.

There are two versions of the Pentium III. One version is available with a non-blocking 512K-byte cache
and packaged in the slot 1 cartridge, and the other version is available with a 256K-byte advanced transfer cache
and packaged in an integrated circuit. The slot 1-version cache runs at half the processor speed, and the integrated-
cache version runs at the processor clock frequency. As shown in most benchmarks of cache performance, in-
creasing the cache size from 256K bytes to 512K bytes only improves performance by a few percent.

Chip Sets

The chip set for the Pentium III is different from the Pentium II. The Pentium III uses an Intel 810, 815, or 820
chipset. The 815 is most commonly found in newer systems that use the Pentium I1I. A few other vendor chip sets
are available, but problems with drivers for new peripherals, such as the video cards, have been reported. An 840
chip set also was developed for the Pentium III, but Intel does not make it available.

The Coppermine version of the Pentium III increases the bus speed to either 100 MHz or 133 MHz. The faster ver-
sion allows transfers between the microprocessor and the memory at higher speeds.

Suppose that you have a 1-GHz microprocessor that uses a 133-MHz memory bus. You might think that the
memory bus speed could be faster to improve performance, and we agree. However, the connections between the
microprocessor and the memory preclude using a higher speed for the memory. If we decided to use a 200-MHz bus
speed, we must recognize that a wavelength at 200 MHz is 300,000,000/200,000,000 or 3/2 meter. An antenna is
1/4 of a wavelength. At 200 MHz, an antenna is 14.8 inches. We do not want to radiate energy at 200 MHz, so we
need to keep the printed circuit board connections shorter than 1/4-wavelength. In practice, we would keep the con-
nections to no more than 1/10 of 1/4-wavelength. This means that the connections in a 200 MHz system should be
no longer than 1.48 inches. This size would present the main board manufacturer with a problem when placing the
sockets for a 200 MHz memory system.

Will it be possible to approach or even exceed the 200 MHz memory system? Yes, if we develop a new tech-
nology for interconnecting the microprocessor, chipset, and memory. At present the memory functions in bursts of
four 64-bit numbers each time we read the main memory. This burst of 32 bytes is read into the cache. The main
memory requires 3 wait states at 100 MHz to access the first 64-bit number and then zero wait states for each of the
three remaining 64-bit wide numbers for a total of seven 100 MHz bus clocks. This means we are reading data at 70
ns /32 = 2.1875 ns per byte, which is a bus speed of 457M bytes per second. This is slower than the clock on a 1GHz
microprocessor, but because most programs are cyclic and the instructions are stored in an internal cache, we can and
often do approach the operating frequency of the microprocessor.

Pin-out

Figure 17-4 shows the pin-out of the socket 370 version of the Pentium III microprocessor. This integrated circuit
is packaged in a 370-pin, pin grid array (PGA) socket. It is designed to function with one of the chipsets available
from Intel. In addition to the full version of the Pentium III, the Celeron, which uses a 66 MHz memory bus speed,
is available. The Pentium III Xeon, also manufactured by Intel, allows larger cache sizes for server applications.

558 CHAPTER 17 THE PENTIUM I, PENTIUM I1i, AND PENTIUM 4 MICROPROCESSORS

F1I25 2332424942223 0>x2>2r 020023 axo020uwnos«

of of ,of of of of Joi 08 of o of of of of of op of of of
of of of O of OF o of of of Q¥ o of of of of of of
o of o of of of o o8 o o oEfop of of of ot of of of
of of -0f 0 of of of oZ of of of of of of of of of of
of of mom 0§ of o, o Oy o3 Oy Of o3 o of om o om of o
o8 of op of ‘of Sog oI “of ‘o8 ©of ‘o of oy fog of Sof of
o§ of ;o of of of
o3 o loy r ~ of of of
of omomom of of oij
o§ omm o8 0§ o8
of 0§ 3 oif o8 o8
of om og o§ 0% of
of oy of of of of
o8 of os od o8 ot
ot of of 3 of of of
o¢ o oz 2 of of of
of ot "o} > O; of of
08 of of] of 08 of
of of "oz 7 oF Of o3
o# of of £ o} ot of
of of of _ o o3 of of
o ot of o o ot
ot oz o o2 of oi
o o: of o§ oz of
oi of of o8 o1 of
o of oz 0§ oi o
ot of “of o2 of of
0% 0; Oz - J of o% of
o* 02 0O} of of op
o 02 o2 of of o
oz o of m m m o of of
o8 of 0oz of O* o0f 0f o 0> ot O° of 08 of 0F of o of
of 0z 0f o3 of 0% of 0% .08 of of of of of of of of oi of
of of o of o3 03 0§ om of o5 08 oz o5 Of of 0§ o of
og of of fof Oy OF of Of 03 of 08 Of o Of Of Of of of Oof
of of of of of 08 o8 0 of of of O op o3 of of o3 oz
Og O O O OF O%F Of OB O3 Oz OF O OF Oz Oy Of OF

MMMMMMMMEWWHMZVIWVUT!IQFHILK‘.NGFEQCBA

-out of the socket 370 version of the Pentium [il microprocessor. (Courtesy of Intel

FIGURE 17-4 The pin

Corporation.)

17-4 THE PENTIUM 4

The most recent version of the Pentium Pro architecture microprocessor is the Pentium 4 microprocessor from

Intel. The Pentium 4 was released initially in November 2000 with a speed of 1.3 GHz. It is currently available in
speeds up to 2.0 GHz. There are two packages available for this integrated microprocessor, the 423-pin PGA and

the 478-pin FC-PGAZ2. Both versions use the 1.8 micron technology for fabrication. As with earlier versions of

the Pentium, the Pentium 4 uses a 100-MHz memory bus speed, but because it is quad pumped, the bus speed can
approach 400 MHz. Figure 17-5 illustrates the pin-out of the 432-pin PGA of the Pentium 4 microprocessor.

17-4 THE PENTIUM 4 559

. Common . , Common
\\ Clock 1 Address ' Clock
®v 0 O 5.0 0 6 6 0 0 0 0 6 0.0 0 0 0
.- O @ 6.0 06 0 06 0 0 0 0 @ 8,0 & O O O .
e .0 0 00,0 0 O O O O O O o~ o O e O e
e 0 O O o\ O 0 0.0 0 0O O O O 0o o o of
® o 00 o o ‘“ o o 0606 0606 0 0 ¢ 0 O o
® o 0.0 © Jo o o o oo o 0o 0 o0 o o o0.,%
e o o o0 6.0 6 O 6 06 06 O 0 @ @1 @ e,’0
® O @ @ITTTTTTTT T EE S E T TS »y’0 O
e o o o Mo
e & o 0 ! O Ol Async GTL +/
e © o o ® O
e o o o 1 0 o JTAG
o o o o | ol
e o o o 10 o
e 6 o o :o o
.'.'.'.': Intel® Pentium® 4 .0000
e o o0 o Processor , R
e o o o Top View '¢°5
o o o o ® O
Vec/1g "0 @ o ! o
Vss o © o o, 10O e
e o o o ! ‘o ©
e o o o 10 o0
e o 0 o ® O
e o o o, 1 @ O
e 0 o o 0 e
o o o o i 0 @
o o o o 0 O
e o o o 1 0 ©
e © o o ! :o o
e o o o , ® O
® 0 © O/ . ccciccccccccmemce—== Mo)
e e ¢,0 0 j0o O 0O O O OO O OOOOO @
® © 0,0 © 9, © © © © © © 0 6 06 0 0 0 O
® 0,0 O OO O O OO OO O O O OO O ©
° 0/0 © 0 000 O 0 O O 0 OO0 0 O 0 00
e.’/0 © o 0.9 @ o © o o 0 0 06 0 ¢ ¢ o o
e,’0 0O ¢ °0 0O O O O 0O O O O O O O O O
4]
+’ Clocks ' Data
l’ !
® = Power
® =GND
O = Signal

FIGURE 17-5 The pin-out of the Pentium 4, 423 PGA. (Courtesy of Intel Corporation.)

Memory Interface

The memory interface to the Pentium 4 typically uses the Intel 850 chipset. The 850 provides a dual-pipe memory
bus to the microprocessor with each pipe interfaced to a 32-bit wide section of the memory. The two pipes function
together to comprise the 64-bit wide data path to the microprocessor. Because of the dual pipe arrangement, the
memory must be populated with pairs of RDRAM memory devices operating at either 600 MHz or 800 MHz.
According to Intel this arrangement provides a 300% increase in speed over a memory populated with PC-100
memory.

Register Set

The Pentium 4 register set is nearly identical to all other versions of the Pentium except that the MMX registers are
separate entities from the floating-point registers. In addition, eight 128-bit wide XMM registers are added for use
with the SIMD (single instruction multiple data) instructions and the extended 128-bit packed doubled floating-
point numbers.

560 CHAPTER 17 THE PENTIUM II, PENTIUM I1l, AND PENTIUM 4 MICROPROCESSORS

You might think of the XMM registers as double wide MMX registers that can hold a pair of 64-bit double-
precision floating-point numbers or four single-precision floating-point numbers. Likewise they can also hold 16
byte-wide numbers as the MMX registers hold 8 byte-wide numbers. The XMM registers are double width MMX
registers.

If the new patch for MASM 6.14 is downloaded from Microsoft,* programs can be assembled using both the
MMX and XMM instructions. To assemble programs that include MMX instructions, use the .MMX switch. For
programs that include the SIMD instructions, use the .XMM switch. Example 17-3 illustrates a very simple
program that uses the MMX instructions to add two eight-byte-wide numbers together. Notice how the MMX
switch is used to select the MMX instruction set. The MOVQ instructions transfer numbers between memory and
the MMX registers. The MMX registers are numbered from MMO to MM7. You can also use the MMX and SIMD
instructions in Microsoft Visual C using the inline assembler if you download the latest patch from Microsoft for
Visual Studio version 6.0.

EXAMPLE 17-3
.MODEL TINY
.MMX
0000 .DATA
0000 DATALl DQ 1ffh
00000000000001FF
0008 DATA2 DQ 101h
0000000000000101
0010 DATA3 DQ ?
0000000000000000
0000 .CODE
. STARTUP
0100 9B OF 6F 06 0000 R MOVQ MMO,DATA1
0106 9B OF 6F OE 0008 R MOVQ MM1,DATA2
010C 9B OF FC C1 PADDB MMO, MM1
0110 9B OF 7F 06 0010 R MOVQ DATA3, MMO
.EXIT
END

Similarly, the XMM software can be used in a program with the XMM switch. Most modern programs use
the XXM registers and the XXM instruction set to accomplish multimedia and other high speed operations.
Example 17-4 shows a short program that illustrates the use of a few XMM instructions. This program multiplies
two sets of four single-precision numbers and stores the four products into the four double words at ANS. In order
to enable access to octal words (128-byte wide numbers) we use the OWORD PTR directive. Also notice that the
FLAT model is used with the C profile. Since the SIMD instructions only function in protected mode (WIN32
model) we define the program in the FLAT model format. This means that the .686 and . XMM switches must pre-
cede the MODEL directive.

EXAMPLE 17-4

.686

. XMM

.MODEL FLAT,C
00000000 .DATA
00000000 3F800000 DATAl DD 1.0
00000004 40000000 DD 2.0
00000008 40400000 DD 3.0

4 The update to any version of MASM 6.XX can be downloaded from Microsoft at www.microsoft.com.

17-4 THE PENTIUM 4 : 561

0000000C 40800000 DD 4.0

00000010 40C9999A DATA2 DD 6.3

00000014 40933333 DD 4.6

00000018 40900000 DD 4.5

0000001C C0133333 DD -2.3

00000020 00000004 I ANS DD 4 DUP(?)
00000000
1

00000000 .CODE

00000000 OF 28 05 MOVAPS XMMO, OWORD PTR DATAl
00000000 R

00000007 OF 28 0D MOVAPS XMM1,OWORD PTR DATA2
00000010 R

0000000E OF 59 C1 MULPS XMMO, XMM1

00000011 OF 29 05 MOVAPS OWORD PTR ANS, XMMO
00000020 R

END

Hyper Pipelined Technology

The Pentium 4 incorporates a deeper pipelined architecture than prior versions of the Pentium microprocessor. Not
only does it queue instructions for execution, but it also queues microinstruction for execution in a special cache for
the microprocessor core. This special microinstruction cache is 12K bytes deep. This technology excludes the execu-
tion unit from the main cache path to the microinstruction stream to increase performance.

CPUID

Like earlier versions of the Pentium, the CPUID instruction returns the standard vendor ID information if executed
with a zero in EAX. The most significant part of the CPU serial number is returned if the EAX register is a 1 be-
fore execution of the CPUID instruction. The middle and least significant parts of serial number are returned in the
EDX and ECX, middle and least respectively, after a second execution of the CPUID instruction with a 3 in EAX.
The CPUID instruction is displayed as a hexadecimal value as XXXX-XXXX-XXXX-XXXX-XXXX-XXXX.
Example 17-5 shows a sample of code that extracts the serial number from the microprocessor and stores it in
three double words of memory. This functions in both the real mode and protected modes of operation.

EXAMPLE 17-5

.MODEL SMALL

.686
0000 .DATA
0000 00000000 MOST DD ?
0004 00000000 MID DD ?
0008 00000000 LEAST DD ?
0000 .CODE

. STARTUP ;read CPU serial number
0010 66| B8 00000001 MOV EAX,1
0016 OF A2 CPUID
0018 66| A3 0000 R MOV MOST, EAX
001C 66| B8 00000003 MOV EAX,3
0022 OF A2 CPUID

0024 66| 89 16 0004 R MOV MID,EDX
0029 66| 89 OE 0008 R MOV LEAST, ECX
.EXIT
END

Pentium 4 Mechanicals

The Pentium 4 microprocessor uses the ATX architecture, but there are some changes that should be noted. The
power supply for the Pentium 4 is different from other ATX power supplies. The Pentium 4 power supply contains

562 CHAPTER 17 THE PENTIUM Ii, PENTIUM I1l, AND PENTIUM 4 MICROPROCESSORS

the standard ATX connector, a 12 V connector, and an auxiliary connector that looks similar to the AT power
supply connector. All three connectors must be plugged into the Pentium 4 main board for proper operation.

Another change to the Pentium 4 system is the case. The case for the Pentium 4 main board must have four

additional standoffs to support the microprocessor. Without the additional standoffs you cannot use the Pentium 4
main board because without them the heat-sink for the microprocessor cannot be attached to the main board.

The power supply for the microprocessor should also be at least 300 W to handle the additional 60 to 70 W

of power required by the microprocessor. This microprocessor runs a bit hotter than prior versions of the Pentium.
The system usually reports a temperature of 120°F, an increase of 25° over the normal Pentium III temperature.

17-5 SUMMARY

10.

1.

. The Pentium II differs from earlier microprocessors because instead of being offered as an integrated circuit,

the Pentium II is available on a plug-in cartridge or printed circuit board.

. The level 2 cache for the Pentium II is mounted inside of the cartridge, except for the Celeron, which has no

level 2 cache. The cache speed is one-half the Pentium II clock speed, except in the Xeon, where it is at the
same speed as the Pentium IL. All versions of the Pentium II contain an internal level 1 cache that stores 32K
bytes of data.

The Pentium II is the first Intel microprocessor that is controlled from an external bus controller. Unlike ear-
lier versions of the microprocessor, which issued read and write signals, the Pentium II is ordered to read or
write information by an external bus controller.

. The Pentium II operates at clock frequencies from 233 MHz to 450 MHz with bus speeds of 66 MHz or 100

MHz. The level 2 cache can be 512K-, IM-, or 2M-bytes in size. The Pentium II contains a 64-bit data bus and
a 36-bit address bus that allow up to 64G bytes of memory to be accessed.

. The new instructions added to the Pentium IT are SYSENTER, SYSEXIT, FXSAVE, and FXRSTOR.
. The SYSENTER and SYSEXIT commands are optimized to access the operating system in privilege level 0

from a privilege level 3 access. These instructions operate at a much higher speed than a task switch or even a
call and return combination.

The FXSAVE and FXRSTOR instructions are optimized to properly store the state of both the MMX
technology unit and the floating-point coprocessor.

The Pentium III microprocessor is an extension of the Pentium Pro architecture with the addition of the SIMD
instruction set that uses the XXM registers.

. The Pentium 4 microprocessor is an extension of the Pentium Pro architecture, which includes enhancements

that allow it to operate at higher clock frequencies than previously possible because of the 1.8 micron
fabrication technology.

The Pentium 4 microprocessor requires a modified ATX power supply and case to function properly in a
system.

Version 6.14 of the MASM program and Visual Studio version 6 now support the new MMX and SIMD
instructions using the .686 switch with the MMX and .XXM switches.

17-6 QUESTIONS AND PROBLEMS

1.
2.
3.

What is the size of the level 1 cache in the Pentium II microprocessor?

What sizes are available for the level 2 cache in the Pentium II microprocessor? (List all versions.)

What is the difference between the level 2 cache on the Pentium-based system and the Pentium II-based
system?

17-6 QUESTIONS AND PROBLEMS 563

19.
20.
21.
22.
23.
24.
25.

26.
27.

28.

. What is the difference between the level 2 cache in the Pentium Pro and the Pentium I1?
. The speed of the Pentium II Xeon level 2 cache is

times faster than the cache in the Pentium II (ex-
cluding the Celeron).

. How much memory can be addressed by the Pentium II?

. Is the Pentium II available in integrated circuit form?

. How many pin connections are found on the Pentium II cartridge?

. What is the purpose of the PID control signals?

. What happened to the read and write pins on the Pentium II?

. At what bus speeds does the Pentium II operate?

. How fast is the SDRAM connected to the Pentium II system for a 100 MHz bus speed version?
. How wide is the Pentium II memory if ECC is employed?

. What new model-specific registers (MSR) have been added to the Pentium II microprocessor?

- What new CPUID identification information has been added to the Pentium II microprocessor?

. How is a model-specific register addressed and what instruction is used to read it?

. Write software that stores a 12H into model-specific register 175H.

. Write a short procedure that determines whether the microprocessor contains the SYSENTER and SYSEXIT in-

structions. Your procedure must return carry set if the instructions are present, and return carry cleared if not
present.

How is the return address transferred to the system when using the SYSENTER instruction?

How is the return address retrieved when using the SYSEXIT instruction to return to the application?
The SYSENTER instruction transfers control to software at what privilege level?

The SYSEXIT instruction transfers control to software at what privilege level?

What is the difference between the FSAVE and the FXSAVE instructions?

The Pentium III is an extension of the architecture.

What new instructions appear in the Pentium III microprocessor that do not appear in the Pentium Pro micro-
processor?

What changes to the power supply does the Pentium 4 microprocessor require?

Write a short program that reads and displays the serial number of the PIII microprocessor on the video
screen.

Develop a procedure that multiplies 256 double-precision floating-point numbers and stores the products in a
memory array called ANSWER.

APPENDIX A
INTEL 8085

Intel’s 8 bit processor i8080 which was widely used needed more than one voltage to be supplied for it to op-
erate. This device also needed a bus controller, System Clock generator and a few more devices for it to function.
This was apart from the usual memory and I/O devices. Intel decided to bring out a microprocessor which could
require only ROM, RAM and I/O devices to make a functional microcomputer. The voltages required by such a
processor was to be cut down to one and TTL compatible. They brought out the microprocessor in 1976 and
called it the ‘i8085’. This device had a built in oscillator, system timing controller and needed just a crystal to be
connected to it. The device was to be packaged in a 40 pin dip (most popular at that time). The memory address
was to be same as i8080. Further there was addition of two signals for serial data transmission and reception for
use in the audio cassette interface for program storage. All this and the 40 pin dip package needed the device to
have some pins to be multiplexed. Intel therefore opted to multiplex the 8 bit data bus with the lower address
lines. Thus cutting down the pins needed by 16 bit address and 8 bit data down to 16 from the usual 24 pins.
There were no memory devices, at that time, which worked with multiplexed address and data. Intel also made
the RAM and ROM devices which functioned with multiplexed address and data. These devices were called
i8155 and 18355 respectively. Intel went a step further and put some /O in these devices. Thus the three chip mi-
crocomputer objective of Intel was achieved-8085 +8155 +8355, a few pull up and a FSK decoder/encoder for
the serial lines and one could build a microcomputer with a off line program storage on a audio cassette recorder.
This was the evolution of 8085 and the multiplexed address and data bus. The next part of this chapter will de-
scribes the 8085 architecture.

The MCS 85 family included the 8085 as the microprocessor, the 8355 containing the 2kX8 ROM and two
8 bit parallel ports, the 8155 containing the 1kX8 RAM and one 8 bit parallel port. All these three devices had
multiplexed address and data buses. The 8085 microprocessor has 8 bit data bus and 16 bit address bus. It has
two address spaces-one for memory and the other for Input/Output (I/0). The selection of the address space is
made using a signal IO/M. The 8085 is a 40 pin device and needs a single 5 volt supply for its operation. It oper-
ates from 3Mhz, 5Mhz, 6Mhz and has a built in oscillator. Thus a crystal, RC or LC network of the desired fre-
quency needs to be connected. The system controller is built-in, four vectored interrupts available, Serial input
and output port, arithmetic instructions for decimal, binary and double precision are available. Addresses 64K
bytes of memory and 256 bytes of I/O space. The 8085 pin assignment is shown at Figure A-1 followed by the
functions of the signals from the pins. There are six groups of 8085 signals and they are listed below:

The Address Bus Group

This is the group of signals which represent the address output by the 8085 as ADO....AD7 and the A8....A15. The
ADO...AD7 signals are the multiplexed lower 8 bit Address along with the 8 bit data bus. In the figure shown, these
are output from the pins 12 to 19 for the multiplexed lower 8 bi: address/Data and pins 21 to 28 for A8 to AlS5.

564

CONTROL
[&
STATUS
SIGNALS

, ADDRESS
GROUP

THE DATA GROUP
X1 40 [] vee
X0 2 ag [row
reserour] 3 38] mon
SERIAL [s [] 4 37 [J ceoun
/O PORTS { wll s 36 [reserm
e [] 6 8 35 [Perov
rst7s] 7 34 [J om
EXTERNALLY rstes [] 8 0 3B s
lgllcTslNA/IEg s B 8 32 [
wrr [] 10 5 31 [Jwe
L w11 A 30 [e
- e[12 29 [N
o [13 28 [Jws -
w2 [14 27 [
ADD:ESS 4 ws [15 26 [we
e | =g =p
a5 [] 17 24 [Qan
as[] 18 23 [a0
L wor[] 19 22 [1*
vss [20 21 Q% -

FIGURE A-1 Pin diagram of 8085

The Data Group

EXTERNALLY
INITIATED
SIGNALS

565

These signals are DO to D7 and are bi-directional. These are multiplexed with address and are available as
ADO....AD7 on pins 12 to 19. The presence of Address on this multiplexed bus is indicated by the ALE (Address
Latch Enable pin 30) signal which is used for latching the address A0)...A7 from the multiplexed address and Data

bus ADO..AD7.

The Control Signals Group
This group consists of six signals of which two are encoded. These signals are as follows:

ALE Address Latch Enable available at pin 30—this signal goes true (High) whenever lower

8 bit address AQ...A7 are available on the multiplexed address and data bus lines
ADO...AD7. This is always true at the beginning of the 8085 machine cycle.

RD This signal goes true (Low) whenever the 8085 is reading data from memory or IO.
This is available at pin 32.
WR This signal goes true (Low) whenever the 8085 is writing data to memory or IO. This is

available at pin 31.

566 APPENDIX A INTEL 8085

I0/M

SI & SO

This signal is used for selecting the address space being accessed by the 8085 through
its Address lines. If this signal is High it indicates that the 80085 is accessing IO
address space and when this signal is of Low it is accessing Memory Address space.
This signal is available at pin 34.

These are encoded signals and used to identify the machine cycle being executed by the
8085. The following is the representation of these signals and they are used in combina-
tion with IO/M,RD,WR

10/M=0 RD=0 WR=1 Si=1 S0=1 Opcode Fetch

10/M=0 RD=0 WR=1 SI=1 SO=0 Memory Read
10/M=0 RD=1 WR=0 SI=0 SO=1 Memory Write Fetch
I0/M=0 RD=0 WR=1 SI=1 SO=1 Opcode Fetch

10/M=1 RD=1 WR=0 SI=1 S0=1 IO Write

I0/M=1 RD=0 WR=1 SI=1 SO=0 10 Write

I0/M=1 RD=1 WR=1 SI=1 SO=1 Interrupt Acknowledge
I0/M=Z RD=Z WR=Z SI=0 SO=0 HALT

10/M=Z RD=Z WR=Z SI=X SO=X HOLD

I0/M=Z RD=Z WR=Z SI=X SO=X RESET

The Power Supply And Clock Group

\Y

cc

GND
X1 & X2

The positive Voltage is the only supply neéded and it is +5 Volts. This is to be provided
at pin 40.

This is the return line of the Vcc and is to be connected to pin 20.

are the oscillator inputs where the crystal of desired frequency is connected. The oscil-
lator is in built and following it is a divide by two circuit from which the CPU gets the
clock. A typical value of 6 Mhz.

Interrupts and Externally Initiated Signal

INTR

INTA
RST 5.5, RST 6.5,

.RST 7.5

TRAP

HOLD

Interrupt Request is a general purpose interrupt which is checked by the 8085 at the end
of an instruction cycle (just after the last clock cycle of an instruction). During HOLD
and HALT states also it is checked. After it is found to have been sensed, the Program
Counter is inhibited from incrementing and an INTA interrupt acknowledge is issued.
When INTA is issued, a restart address or a call address is inserted which will be exe-
cuted by the 8085 as an Interrupt service routine. Before executing any further instruc-
tions the Program counter and the PSW are saved on the stack. The Program counter is
now loaded with the address inserted after the INTA is issued.

This is an interrupt request INTR acknowledge. This is used for activating an interrupt
port or the 8259 priority interrupt controller

This causes a RESTART from a specific address to take place, the addresses are 2CH,
34H,

3CH, and the Trigger Type is High Level, High Level and Rising Edge respectively.
They have the same timing as INTR but have a higher priority than INTR and are mask-
able by using the SIM (Set Interrupt Mask) register. Their priorities are in increasing
order with RST 7.5 as highest

This is a non maskable interrupt and has higher priority than the RST 7.5. The address
where the Interrupt service routine for trap is expected is at 24H.

This input is used by a device which wants to be a bus master. Such a device will assert
this pin and the 8085 will release the bus at the end of the current machine cycle by tri-
stating the address, data busses, IO/M line, RD and WR signals. After this it issues a

SERIAL 10 PINS 567

HLDA (Hold Acknowledge) and the new bus master may take over. The 8085 will
takeover the tri-stated busses after the HOLD line is un-asserted.

HLDA This single is asserted half a clock cycle after the HOLD single has been accepted by
the 8085. This is a acknowledgment to the requesting device that the 8085 has relin-
quished the bus.

READY A low on this line indicates to the 8085 that a memory or IO device is not ready for the
data transfer operations. The 8085 will wait for an integral number of clock cycles till
the READY line is asserted.

RESETIN This is a shemitt trigger asynchronous input. The Data, Address and control busses are
tri-stated, the program counter is set to 0000H address, the Interrupt Enable and HOLD
flip Flops (Flags) are reset. For its proper resetting operations this pin should be held
low for atleast 3 clock cycles after the Vcc has stabilized. As long as this pin is asserted
the 8085 busses will be in tri-state condition.

RESETOUT This is an Output indicating that the 8085 has been reset and it is synchronised with the
clock and lasts an integral number of clock cycles till the reset is un-asserted. This is
used for resetting the peripheral chips of the 8085.

Serial 10 Pins

SID This is an input bit and is loaded into bit 7 of the accumulator whenever the RIM (Read
Interrupt Mask) instruction is executed. This and the SOD where 8085’s approach to se-
rial communications.

SOD This is an output bit and sets or resets as specified by the SIM (Set Interrupt Mark) in-
struction is executed. This and the SID where 8085’s approach to serial communications.

Functional Description

The block diagram (see Figure A-2) depicts the internal building blocks of the 8085 whose functions are described
here:

Timing and Control

This block has a clock generator which oscillates at the frequency of the csytal connected to X1 & X2 input. The
output of the clock generator is provided at the Clock Output pin for use of the peripheral devices. The control
signal RD and WR are generated and output is given at the respective pins as the status signal ALE, IO/M, SO, SI;
the DMA signals HOLD, HLDA and the reset signal RESETIN, RESETOUT

Arithmetic Logic Unit

As the name indicates, this block performs the arithmetic and logic operations. It uses the Accumulator and the
Temp register for operands and for holding data during the ALU’s operation. The Flag Flip Flops are the bits
which represent the condition of the ALU after the current operation. These blocks are shown in the block diagram
just above the ALU. The Accumulator register and the general purpose register ‘A’ are referred almost as one. The
flag Flip Flops are called Status Register or Processor Status Word. The bits and their position is shown below.

D7 D6 D5 D4 D3 D2 D1 DO
S Sign Z Zero AC Auxiliary Carry
P Parity Flag C Carry Flag
Flag Flag Flag

568 APPENDIXA INTEL 8085

'NTA RST RST RST TRAP

85 78 ; SD SOD
5 4 vss
Im I" $; ; I i ivcc lGND
INTERRUPT CONTROL [serucvocontroL | 0w o

T i

< 1 Pl MULTIPLEXOR
w ACCUMULATOR
v i TEMP REG 8 BIT
INSTRUCTION E
"\ REGISTER G B 8BT| c 8B
| AccumuLATDR | [TEMP REG] ~Z 's -
FLAG INSTRUCTION T D 8BT
REGISTER DECODER E
R H 8BT | L 8BIT
MACHINE
< lr' o : STACK POINTER
ENCODER E ’ 16BIT
E
c PROGRAM COUNTER ¢ o
. T INCREMENTER/DECREMENTER
o ADDRESSLATCH 1ggiT
X, 2 CLK TIMING AND CONTROL
[0

l37I RD IW“ iALEirsgi,S1w ﬁl!:mmi‘“w I \t 7 AV

READY RESET Four | DATA/ADDRESS
ADDRESS BUFFER g o BUFRER 8BIT

A15 mlms A12|A11 MOle[AaI mlmlmlmlmlm LAD1tD°
[

N 228242562728 4945 47 45 15 14 13 12

FIGURE A-2 Functional block diagram of intel 8085 with pin numbers

Carry Flag This flag is designated the label ‘C’. This flag is affected by an arithmetic operation whenever a
carry is generated. During a subtract operation which has a negative result the flag is set, also when a subtract
with a borrow is being performed by the programmer this flag may be set and referred as a borrow flag. It is also
settable and resetable by instructions.

Parity Flag This flag is referred as ‘P’. Whenever the accumulator contains even number of 1’s this flag is set
indicating an even parity. Similarly for odd parity it is cleared when there is a odd number of 1’s.

Auxiliary Carry AC is the reference name given to it and is generated when the lower nybble of the accumulator
is greater than ‘9’. This flag causes the addition of six to the lower nybble when it is set and the Decimal Adjust

REGISTER ARRAY, STACK POINTER, PROGRAM COUNTER BLOCK 569

Accumulator instruction is used. The result is stored in the lower nybble. Further this nybble is added to the upper
nybble and if the upper nybble exceeds 9 then there is the addition of six to the upper nybble; if a carry
comes out of this operation on the upper nybble the Carry Flag C is set. This is useful for performing BCD
arithmetic.

Zero Flag Whenever an instruction has caused the accumulator contents to become O this flag is set. This is also
true for the other registers which become zero. The flag is cleared if the instruction did not result in a 0 result in
the register. ‘

Sign Flag The sign bit of an 8 bit number is the D7 bit and if this bit becomes 1 after an instruction then this
flag is set. Conditional transfer control instructions like the Jump on condition..label, the subroutine calls on
condition also use the flag register for their performance.

The Instruction Decoder

When an instruction is fetched from the program memory it is loaded in the instruction register. The operation
code part of the instruction in the instruction register is used by this decoder to generate a sequence of machine
code to execute the instruction also using the operands to do so in case they are present.

Register Array, Stack Pointer, Program Counter Block

Register Array

This block is accessed via a multiplexor which multiplexes the internal data bus and the instruction decoder. There
is a register select decoder which selects the register that is to be active. W register is an 8 bit temporary register
for doing intermediate operations. The other registers in this block are:

The A register or accumulator is an 8 bit register which is closely associated with the ALU and the Flag
Register.

The register B, C, D, E, H, L, are 8 bit general purpose registers and can be used as 6 individual 8 bit
registers or as 3 paired 16 bit registers. The pairs are restricted only as follows B & C, D & E, H & L. These
are used for counters or for Double Precision Arithmetic. H & L are associated with single byte memory
transfer where they would contain the memory address and the single byte instruction would specify the
register to be used for the transfer.

The Stack Pointer is a 16 bit register and does the classical operation of stack management for the 8085.
This facilitates the Last In First Qut operations needed for stack management.

The Program Counter

The PC as it is referred is a 16 bit register which contains the address of the next instruction to be fetched from the pro-
gram memory and lodged in the instruction register. The upper 8 bits of this register are put in the address register and
the lower part is put in the data/address buffer register. These two buffers are output to the pins whenever the timing
control block issues the Address Latch Enable (ALE) signal. The upper part is put on the pins carrying A* to A15 sig-
nals and the lower part is put on the pins outputing ADO to AD7. This register Program Counter is forced to the reset
Vector address of 8085 on receiving the Reset Signal. The reset Vector address of the 8085 is 0000H.

Interrupt Control

This block takes inputs from the pins representing INTR, RST 7.5, RST 6.5, RST 5.5 and TRAP. It interacts with
the register array block and other blocks through the internal data bus. It generates the INTA Interrupt Acknowl-
edge accordingly to the respective 8085 pin.

570 APPENDIXA INTEL 8085

Serial Input & Output

This block operates the SID and SOD pins whenever the specific instructions like RIM & SIM are used. It uses the
accumulator bit contents for operating.

Timing Diagram

The Write Cyele The first clock during a machine cycle is the T1 state, and 8085 machine cycle has 4T states T1,
T2, T3, T4. The following is the description state by state.

Fetch opcode

T1 state-

1.

w bW

The Program Counter lower 8 bit addresses are put on ADO. AD7 and upper* bits are put on ADS to
ADI15

. The ALE signal is asserted-made high-indicating address is present on ADO to AD7 lines.
- I0/M pin is made low indicating that the data is from memory
. RD is T3, T2, stack not active that is low. As this is memory read for fetching Op Code.

WR is not active that is high. For a memory read RD.

T T2 T3 T4

CLK | |

|
| I
! !
AD15-ADg >< [A15—Aii ADDRESS 1 ><
| il
|

ADO-AD7
I I
I\ | I |
ALE | | |
| | I
I0/M | | |
N\ | L/

| | |

fD |
| I |
[} |

- | |

FIGURE A-3 OP code fetch machine cycles

ADDRESS SPACE AND ADDRESSING MODES 571

Instruction Format

The 8085 has one, two and three byte instructions and their byte ordering is little endian where the operand one

(second byte) will be the destination and operand two (third byte) will be the source. The instruction format is as
follows-

One Byte
Operation Code only I
Two Byte
| OpCode | Dataor VO address |
Three Byte

I Op Code l Lower address 1 Higher Address]

The destination and source registers are specified in the opcode itsel and the format is given below
l[oft]|pfp[Dfs|s]|s]

The 01 is the opcode for register/memory move from/to memory/register, DDD is the destination Register,
SSS is the Source register. The Register coding is

DDD/SSS
000
001
010
011
100
101
110
111

L]

CImooOowag

> g
:
g

For example if the data from register C is to be moved to memory (pointer to be the H&L register). The
Source is C so SSS=001 and the destination is memory DDD=110 so the instruction is 01 110 001 = 71H. This in-
struction is expressed in mnemonic form as

MOVm,C ; MOV is opcode, m is memory (operand 1), C is the Operand 2

MOV B,C ; S$SS=001, DDD=000, so MOV B,C 01 000 001
MOVLm ; $§8S=110, DDD=101 so MOV L,m 01 101 110

RST instructions type is represented in the Destination field which are the bits D6, D5, D4 and the code is
AAA
11 AAA 111 is the RST AAA.

The other instructions have fixed opcodes which are not having fields within them for changing the destina-
tion and/or source as there is no need

Address Space and Addressing Modes

Address Space

The 8085 has two address space—Memory and Input/Output. The address space is understood as those unique iso-
lated regions or spaces which are accessible using the same address bus. So the I/O devices which are connected to
the 8085 have their own addresses which may be the same as the memory addresses but are isolated by a signal

572 APPENDIX A INTEL 8085

T1 T2 I3

L
T
oK |
W
|
| [
L i
A15-A8 >< MEMORY ADDRESS
| |

1 1
a07-AD0X__AT-A0_ X D0-D7 °H
I

T\

ALE

FIGURE A-4 Memory write cycle.

specifying whether the address is of a /O or Memory—the signal I0/M does this in 8085. This method is also
called isolated IO & Memory.

Addressing Modes

These have been explained in the earlier chapters and should be referred if more clarity is needed. The following
are the addressing modes of 8085. ‘

Implied Addressing The instruction is directly decoded to a 8085 control signal as the operation is an im-
plied one having no need for data, that is DAA adjusts the accumulator as two nybbles
for the purpose of BCD arithmetic.

Immediate Addressing The data is available in operand two of the instruction and no other reference need be
done.

Direct Addressing The address of the data is in operands two & three. Computation for effective address is
not needed as it is directly available eg. LDA 16 bit address, STA 16 bit address

Register Direct The 16 bit address is contained in the H and L register pairs. Computation for effective

Addressing address is not needed as it is directly available.

Indirect Addressing Here the Operands two and three contain the address of a memory location which con-
tains the address where the data may be located.

INSTRUCTION SET

Instruction Set

Data Transfer Group

MVI Rddd 8 bit data
MOV Rddd, m

LDA 16 bit Address
STA 16 bit Address
LDAX B
LDAXD
STAX B

LXI H 16 bit data
LXI B 16 bit data
LXID 16 bit data
XCHG

Stack Operations

PUSHB
PUSHD
PUSHH
PUSH PSW
POPB
POPD
POPH
POP PSW
XTHL

LXI SP, 16 bit data
INX SP
DCX SP

573

The data is the second operand 8 bit, it is copied to the Accumulator

The contents of memory location whose address is in H & L register pair are copied to
register Rddd.

Loads the accumulator directly from the 16 bit address specified in operand 2 & 3 of the
instruction.

The contents of accumulator are copied to the 16 bit memory location whose address
specified is operand 2 & 3 of the instruction.

Loads the accumulator from the address specified in register B&C. This is register direct
addressing

Loads the accumulator from the address specified in register D&E. This is register direct
addressing

Stores accumulator contents to the address specified in register D&E. This is register di-
rect addressing

The H & L register pair is loaded with data in operand 2 & 3. Immediate instruction.
The B & C register pair is loaded with data in operand 2 & 3. Immediate instruction.
The D & E register pair is loaded with data in operand 2 & 3. Immediate instruction.
Exchanges D&E, H&L registers

Pushes the register pair B & C to stack

Pushes the register pair D & E to stack

Pushes the register pair H & L to stack

Pushes the Accumulator A register and flag register to stack
Pops the stack to the register pair B&C

Pops the stack to the register pair D&E

Pops the stack to the register pair H&L

Pops the accumulator A register and the flag register from stack
exchanges top of stack and H&L registers

Loads the SP with location in memory, it is to point

the SP is incremented by two

the SP is decremented by two

Arithmetic Instructions

ADI 8 bit data
ACI 8 bit data
ADD Rsss
ADC Rsss
ADD m

8 bit data in operand one is added to A register

8 bit in operand one is added to A register along with Carry
the register Rsss is added to Accumulator

the register Rsss with Carry is added to Accumulator

single bye instruction to add contents of memory location pointed by H&L pair to the ac-
cumulator

574 APPENDIX A INTEL 8085

ADCm

DADD
DADH

DAD SP

SUB Rsss

SUI 8 bit Data
SBI 8 bit Data
SUB m

SBB m

INR Rsss
DCR Rsss
INRm
DCRm
INXB

INXD

INXH
DCXB
DCXD
DCXH

Logic Instructions

ANA Rsss
XRA Rsss
ORA Rsss
CMP Rsss
ANA m

XRA m
ORAm
CMPm

ANI 8 bit data
XRI 8 bit data
ORI 8 bit data
CPI 8 bit data

single bye instruction to add contents of memory location pointed by H&L pair to the ac-
cumulator using the Carry

Double Precision add D&E are Added to H&L

Double Precision add H&L are Added to H&L

Double Precision add SP is Added to H&L

The register Rsss is subtracted from A register with borrow

8 bit data in operand one is subtracted from A register

8 bit data in operand one is subtracted from A register with Borrow
Subtract contents of memory pointed by H&L registers from A register
Subtract contents of memory pointed by H&L registers from A register with borrow
Increment register Rsss

Decrement register Rsss

Increment memory

Decrement memory

Increment B&C register pairs

Increment D&E register pairs

Increment H&L register pairs

Decrement B&C register pairs

Decrement D&E register pairs

Decrement H&L register pairs

And register Rsss with accumulator

XOR register Rsss with accumulator

OR register Rsss with accumulator

Compare register Rsss with accumulator

And register memory with accumulator

XOR register memory with accumulator

OR register memory with accumulator

Compare register memory with accumulator

AND 8 bit data in operand one with accumulator

XOR immediate 8 bit data in operand one with accumulator
OR immediate 8 bit data in operand one with accumulator
Compare immediate 8 bit data in operand one with accumulator
Rotate Left Accumulator one bit

Rotate Right Accumulator one bit

Rotate Left Accumulator one bit through Carry

Rotate Right Accumulator one bit through Carry

Transfer Control/Branch Instructions

JMP 16 bit addr

JC 16 bit addr

Jump Unconditional
Jump on Carry

MACHINE CONTROL INSTRUCTIONS

JNC 16 bit addr
JZ 16 bit addr
JNZ 16 bit addr
JP 16 bit addr
JM 16 bit addr
JPE 16 bit addr
JPO 16 bit addr
PCHL

Subroutine Calls

CALL 16 bit address
CC 16 bit address
CNC 16 bit address
CZ 16 bit address
CNZ 16 bit address
CP 16 bit address
CM 16 bit address
CPE 16 bit address
CPO 16 bit address

Subroutine Returns

RET
RC
RNC
RZ

Implied

CMA
STC
CMC
DAA
RIM
SIM

Jump on No Carry

Jump on Zero

Jump on Not Zero

Jump on Positive

Jump on Minus

Jump on Parity Even
Jump on Parity Odd

H&L to Program Counter

Call unconditional
Call on Carry

Call on No Carry
Call on Zero

Call on Not Zero
Call on Positive
Call on Minus

Call on Parity Even
Call on Parity Odd

Return

Return on Carry
Return on No Carry
Return on ZERO

Compliment Accumulator
Set Carry

Compliment Carry

Decimal Adjust Accumulator
Set Interrupt Mask

Reset Interrupt Mask

Machine Control Instructions

El

DI

NOP
HLT
RST X.Y

Enable Interrupts
Disable Interrupts
No-Operation

HAlt

Restart from RST X.y

575

576 APPENDIX A INTEL 8085

Interrupt Structure and Restart Operations

8085 has a five interrupts namely INTR, RST 5.5, RST 6.5 RST 7.5 and TRAP. TRAP is the Non Maskable In-
terrupt of 8085. INTR, RST 5.5, RST 6.5, RST 7.5 are maskable interrupts. The RST 5.5, RST 6.5, RST 7.5 and
TRAP are the restart interrupts with each of the RST types having independent masking bits whereas TRAP is
non maskable. The RST interrupts cause a RESTART (saving the program counter on the stack and branching to
the RESTART address. DRST 5.5, RST 6.5, RST, 7.5 RESTART addresses are 2CH, 34H, 3CH and for the
TRAP it is 24H. The TRAP causes internal operation of a restart irrespective of the state of the interrupt enable or
masks. The status of the RST interrupt masks can be affected by the SIM instruction and the RESETIN.

The priorities of these interrupts are fixed—with the TRAP having the Highest priority followed by RST 7.5,
RST 6.5, RST 5.5, INTR being the lowest priority. If a lower priority interrupt occurs when a higher priority of
interrupt is being executed the lower priority interrupt is performed even if the higher priority interrupt has enabled the
interrupt masks. The TRAP input is used for disaster management like power failure or brown out, or bus errors.

The Three Chip Design

The system interface of the 8085 for a minimal system is straight forward. This is possible because the MCS85
family has some devices which have multiplexed address & Data bus. These devices are i8355 & i8155. The
i8355 contains 2k Bytes of ROM and two 8 bit I/O ports. The i8155 has 256 bytes of RAM, two 8 bit I/O ports,
one 6 bit I/O port and a programmable timer in a chip. This facilitates making a minimum 3 chip 8085 application
with all the peripherals needed to make a simple computer. The specification of such a microprocessor system is

8 bit CPU

2 Kilo Bytes ROM

256 Bytes RAM

1 Timer/Counter

4 eight bit Ports

1 six bit Port

4 interrupt levels

Serial In/Serial Out

The circuit diagram of such a minimal system is shown in Figure A-5 notice that the device select lines, CE
pins of 8355 and 8155 are going into the middle of the Address bus-this indicates that these lines will be going to
an address line. Further the CE pin of 8155 is HIGH true and the CE pin of 8355 is LOW true. If A15 is connected
t0 i8355 ROM CE pin and also to i8155 RAM chip then ROM would be selected whenever the A15 line went low,
that is in the address range 0000H-7FFFH, the ROM would be selected which is suitable as the reset vector of
8085 is 0000H and the ROM should be located there. Similarly when A15 goes HIGH the i8156 is selected which
is also suitable. This is for a minimum system so that this type of loose decoding (wrap around repeated address
range) of the device will not affect the function.

Program Examples

The following programs are for acquainting the reader to 8085 memory access techniques. Initially it is to be
assumed that the program code may be written in memory locations 6000H to 7 FFFH

Block Transferring ‘n’ number of bytes from memory location 7000 to 7 FFF to 7100H to 71 FFFH where n =
0..FFH.

ORG 6 FFFH

ndb 10 h ORG ; 16 bytes in the value of n, so 16 byte transfer
6 000H

LXI H, 6FFFH ; H &L to point to number of bytes to transfer

877

PROGRAM EXAMPLES

waejsAs seindwososoiu Ggog diyo saiy) lewiiw Yy S~V 3HNOIL

T f §Egn

333 4
33 44+
RN
>
= o d £
A 3 u—d
>
2 ,
S = g m W
8z _
9 z & ‘
' 3
<
g N—@
p:]
m <
= N—§
p ol
<]
Q N—2
o o M
NZ S~4 <> >
o HAQY oivev 30 3 au | [I3S3H wor woav IV Qd HM 3D I SRNENN
13538 5 niva o ~iva SSA h P
ol 711117
gs.8 - 8288 ED
] EERE
v 1HOd g 140d 9 140d 0 1HOod O0A

578 APPENDIXA INTEL 8085

MOVC,m ; Cis loaded with count n, and is the loop counter
LXID, 7100H ;D & E are pointing to destination memory

INXH ; make H & L point to the source memory

Again: MOV A,m ; Accumulator is read source location (H & L)

STAXD s Accumulator is stored in destination location (D & B)
INXH : ; Point to next source location

INXD ; Point to next destination location

DCKC ; Loop count decremented

JNZ AGAIN ; If loop not done jump to Again

HLT ; HALT

BCD ADDITION of 8 packed BCD numbers are located at 7010 and 7020 H. The result is stored in
7030 H. ORG. 7010H

NUMBER 1 db 23, 45, 56, 62, 95,42, 71, 85
ORG 7020H
NUMBER 2 db 55, 66, 33, 29, 87, 69, 75, 18
ORG 7030 H
RESULT db 00, 00, 00, 00, 00, 00, 00, 00,
ORG 6000H
LXISP,7090 H ; initialise the stack at a location allowing room for
; stack operation
MVI, C, 08H ; Loop count set to number of BCD bytes to add

LXIH,7030H ; Initialise HL to point to result
LXID,7020H ; Initialise DE to point to num 2
; note that the actual address are used in code
; though they could be referred by num 1, num 2
; this is done for associating label of value.
PUSH H ; There are three points needed so save HL pointing
; toresult and load HL with the address
LXIH,7010H ; ofnum1

STC ; CLEAR THE CARRY, IF ANY, AS A RESULT OR
CMC ; PREVIOUS CODE EXECUTION
AGAIN : LDAX D ; getthe next num 2 in A reg
ADCm ; add the next num 1 to A reg
DAA ; do BCD addition (packed BCD)
XTHL ; Save num 1 address and restore result address
; by exchanging the top of stack with A & L registers
MOVmA ; store next result byte
INXH ; H &L pointed to the next result location
INXD ; D & E pointed to the next num location
XTHL ; Save next result location of load sHL with num 1 location done
INXH ; Point to next num 1 location
DCRC ; Loop count
JNZ AGAIN ; if loop count not done repeat from Again

HLT

PROGRAM EXAMPLES

579

Finding largest number in array of bytes starting at 7010 H, Array size in 6FFfH.

ORG 6 FFFH
ARRAY-SIZE
LXIH, ARRAY
SIZE

MOVC, M
DCRC

XRA H
INX A
CMP m
INCH1
MOV A, m
DCRC
INZH2
HALT

1)

DH5
ORG 6000
initialise loop count to Array size

As the comparision is between two bytes the

number of comparisions made is one less than array size.
First largest number in A is zero

Compare A with memory having next byte

(A-m) if positive array is clear, so A is the greatest
get the large number from memory to A register
Check whether loop count done

A register now contains largest number in Array

APPENDIX B

The Assembler, Disk Operating System,
and Basic I/0 System

This appendix is provided so the assembler can be understood and to also show the DOS (disk operating system),
BIOS (basic I/O system). These function calls are used by assembly to control the personal computer. The function
calls control everything from reading and writing disk data, to managing the keyboard and displays, to controlling
the mouse. The assembler represented in this text is the Microsoft ML (Version 6.X) and MASM (version 5.10)
macro assembler programs. It is fairly important that version 6.X be used instead of the dated version 5.10.

ASSEMBLER USAGE

The assembler program requires that a symbolic program first be written, using a word processor, text editor, or
the workbench program provided with the assembler package. The editor provided with version 5.10 is M.EXE,
and it is strictly a full-screen editor. The editor provided with version 6.X is PWB.EXE, and it is a fully integrated
development system that contains extensive help. Refer to the documentation that accompanies your assembler
package for details on the operation of the editor program. If at all possible, use version 6.X of the assembler
because it contains a detailed help file that guides you through assembly language statements, directives, and even
the DOS and BIOS interrupt function calls.

If you are using a word processor to develop your software, make sure that it is initialized to generate a pure
ASCII file. The source file that you generate must use the extension .ASM, which is required for the assembler to
properly identify your source program.

Once your source file is prepared, it must be assembled. If you are using the workbench provided with ver-
sion 6.X, this is accomplished by selecting the compile feature with your mouse. If you are using a word processor
and DOS command lines with version 6.14, see Example B-1 for the dialog for version 6.14 to assemble a file
called FROG.ASM. Note that this example shows the portions typed by the user in italics.

EXAMPLE B-1

A>MASM

Microsoft (R) Macro Assembler Version 6.14.8444
Copyright (C) Microsoft Corp 1981, 1997. All rights reserved.

Source filename [.ASM]:FROG
Object filename [FROG.OBJ] :FROG
List filename [NUL.LST]:FROG
Cross reference [NUL.CRF]:FROG

580

ASSEMBLER MEMORY MODELS ‘ 581

Once a program is assembled, it must be linked before is can be executed. The linker converts the object file
into an executable file (EXE). Example B-2 shows the dialog required for the linker using an MASM version 5.10
object file. If the ML version 6.X assembler is in use, it automatically assembles and links a program by using the
COMPILE or BUILD command from workbench. After compiling with ML, workbench allows the program to be
debugged with a debugging tool called code view. Code view is also available with MASM, but CV must be typed
at the DOS command line to access it.

EXAMPLE B-2

A:\>LINK

Microsoft (R) Overlay Linker Version 3.64
Copyright (C) Microsoft Corp 1983-1988. All rights reserved.

Object modules [.OBJ]:FROG
Run file [FROG.EXE] :FROG
List file [NUL.MAP]:FROG
Libraries [.LIB]:SUBR

If MASM version 6.X is in use, the command line syntax differs from version 5.10. Example B-3 shows
the command line syntax for ML, the assembler and linker for MASM version 6.X.

EXAMPLE B-3

C:\>ML /F1TEST.LST TEST.ASM

Microsoft (R) Macro Assembler Version 6.14.844
Copyright (C) Microsoft Corp 1981-1997. All rights reserved.

Assembling: TEST.ASM

Microsoft (R) Segmented-Executable Linker Version 5.13
Copyright (C) Microsoft Corp 1984-1993. All rights reserved.

Object Modules [.0BJ]: TEST.obj/t
Run File [TEST.com]): “TEST.com”
List File [NUL.MAP]: NUL
Libraries [.LIB]:

Definitions File [NUL.DEF]: ;

Version 6.X of the Microsoft MASM program contains the Programmer’s Workbench program. Pro-
grammer’s Workbench allows an assembly language program to be developed with its full screen editor and tool
bar. Figure B—1 illustrates the display found with Programmer’s Workbench. To access this program, type PWB at
the DOS prompt. The make option allows a program to be automatically assembled and linked, making these tasks
simple in comparison to version 5.10 of the assembler.

ASSEMBLER MEMORY MODELS

Memory models and the .MODEL statement are introduced in Chapter 4 and used exclusively throughout the text.
Here, we completely define the memory models available for software development. Each model defines the way that
a program is stored in the memory system. Table B-1 describes the different models available with both MASM
and ML.

582 APPENDIXB THE ASSEMBLER, DISK OPERATING SYSTEM, AND BASIC 1/0 SYSTEM

DATA SEGMENT

33H ;position
POS DB

DATA ENDS

CODE SEGMENT 'CODE'
ASSUME CS:CODE,DS:DATA

PORTA EQU 40H ;port number
STEP PROC FAR

MOV AL,POS ;get position
CMP CX,8000H
JA RH ;if right-hand direction
CMP CX,0
JE STEP_OUT ;if no steps
STEP1:
ROL AL,1 ;step left

out PORTA,AL

FIGURE B-1 The edit screen from Programmer's Workbench used to develop assembly
language programs.

TABLE B-1 Memory models for the assembler.

Model Type Description

Tiny All data and code must fit into one segment. Tiny programs are written in .COM
format, which means that the program must be originated at location 100H.

Small This model contains two segments: one data segment of 64K bytes and one
code segment of 64K bytes.

Medium This model contains one data segment of 64K bytes and any number of code
segments for large programs.

Compact One code segment contains the program, and any number of data segments
contain the data.

Large The large model allows any number of code and data segments.

Huge This model is the same as large, but the data segments may contain more
than 64K bytes each.

Flat Only available to MASM 6.X. The flat model uses one segment of 512K bytes to

store all data and code. Note that this model is mainly used with Windows NT.

Note that the tiny model is used to create a .COM file instead of an execute file. The .COM file is different
because all data and code fit into one code segment. A .COM file must use an origin of offset address 0100H as the
start of the program. A .COM file loads from the disk and executes faster than the normal execute (. EXE) file. For
most applications, we normally use the execute file (EXE) and the small memory model.

ASSEMBLER MEMORY MODELS

583

TABLE B-2 Defaults for the .MODEL directive.
Model Directives Name Align Combine Class Group
Tiny ".CODE _TEXT word PUBLIC ‘CODFE’ DGROUP
.FARDATA FAR_DATA para private ‘FAR_DATA’
.FARDATA? FAR_BSS para private FAR_BSS
.DATA _DATA word PUBLIC DATA’ DGROUP
.CONST CONST word PUBLIC ‘CONST DGROUP
.DATA? _BSS word PUBLIC ‘BSS’ DGROUP
Small .CODE _TEXT word PUBLIC ‘CODFE’
.FARDATA FAR_DATA para private ‘FAR_DATA’
.FARDATA? FAR_BSS para private ‘FAR_BSS’
.DATA _DATA word PUBLIC ‘DATA’ DGROUP
.CONST CONST word PUBLIC ‘CONST DGROUP
.DATA? _BSS word PUBLIC ‘BSS’ DGROUP
.STACK STACK para STACK ‘STACK’ DGROUP
Medium CODE name_TEXT word PUBLIC ‘CODE’
.FARDATA FAR_DATA para private ‘FAR_DATA’
.FARDATA? FAR_BSS para private ‘FAR_BSS'
.DATA _DATA word PUBLIC ‘DATA' DGROUP
.CONST CONST word PUBLIC ‘CONST’ DGROUP
.DATA? _BSS word PUBLIC ‘BSS’ DGROUP
.STACK STACK para STACK ‘STACK" DGROUP
Compact CODE _TEXT word PUBLIC ‘CODFE’
.FARDATA FAR_DATA para private ‘FAR_DATA’
.FARDATA? FAR_BSS para private ‘FAR_BSS'’
.DATA _DATA word PUBLIC ‘DATA’ DGROUP
.CONST CONST word PUBLIC ‘CONST DGROUP
.DATA? _BSS word PUBLIC ‘BSS’ DGROUP
.STACK STACK para STACK ‘STACK’ DGROUP
Largeor CODE name_TEXT word PUBLIC ‘CODFE’
huge .FARDATA FAR_DATA para private ‘FAR_DATA’
.FARDATA? FAR_BSS para private ‘FAR_BSS'
.DATA _DATA word PUBLIC ‘DATA’ DGROUP
.CONST CONST word PUBLIC ‘CONST’ DGROUP
.DATA? _BSS word PUBLIC ‘BSS’ DGROUP
.STACK STACK para STACK ‘STACK’ DGROUP
Flat CODE _TEXT dword PUBLIC ‘CODFE’
.FARDATA _DATA dword PUBLIC ‘DATA’
.FARDATA? _BSS dword PUBLIC ‘FBSS’
.DATA _DATA dword PUBLIC ‘DATA’ DGROUP
.CONST CONST dword PUBLIC ‘CONST DGROUP
.DATA? _BSS dword PUBLIC ‘BSS’ DGROUP
.STACK STACK dword STACK ‘STACK’ DGROUP

584 APPENDIXB THE ASSEMBLER, DISK OPERATING SYSTEM, AND BASIC 1/0 SYSTEM

When models are used to create a program, certain defaults apply, as illustrated in Table B=2. The directive in
this table is used to start a particular type of segment for the models listed in the table. If the .CODE directive is
placed in a program, it indicates the beginning of the code segment. Likewise, .DATA indicates the start of a data
segment. The name column indicates the name of the segment. Align indicates whether the segment is aligned on a
word, doubleword, or a 16-byte paragraph. Combine indicates the type of segment created. The class indicates the
class of the segment, such as ‘CODE’ or ‘DATA’. The group indicates the group type of the segment.

The directive from Table B-2 selects the type of information in a program. For example, .CODE is placed
before the code. The name column is used if full-segment descriptions are mixed with the programming models for
reference. The alignment specifies how the data in the segment are ali gned. A para (paragraph) alignment starts a
segment at the next paragraph, i.e., the next hexadecimal address ending in a OH. The combine column indicates
how various segment are combined and labeled (PUBLIC or private). The class is the actual segment name, and
the group is the grouping of segments.

Example B—4 shows a program that uses the small model. The small model is used for programs that contain
one DATA and one CODE segment. This applies to many programs that are developed. Notice that not only is the
program listed, but so is all the information generated by the assembler. Here, the .DATA directive and .CODE di-
rective indicate the start of each segment. Also notice how the DS register is loaded in this program. As presented
throughout the text, the .STARTUP directive can be used to load the data segment register, set up the stack, and
define the starting address of a program. In this example, an alternate method (END BEGIN) is illustrated for
loading the data segment register and defining the starting address of the program. ’

EXAMPLE B—4
Microsoft (R) Macro Assembler Version 6.14.8444
.MODEL SMALL
.STACK 100H
0000 .DATA
0000 0A FROG DB 10
0001 0064 [DATAl1 DB 100 DUP (2)
02
]
0000 .CODE
0000 B8 — R BEGIN: MOV AX, DGROUP ;set up DS
0003 8E D8 MOV DS,AX
END BEGIN
Segments and Groups:
Name Size Length Align Combine Class
DGROUP GROUP
_DATA L . . 0 L 0 0L L L. . . 16 Bit 0065 Word Public 'DATA’
STACK16 Bit 0100 Para Stack ' STACK'
_TEXT 16 Bit 0005 Word Public *CODE’
Symbols
Name Type Value Attr
@CodeSize Number 0000h
@DataSize Number 0000h
@Interface Number 0000h

@Model Number 0002h

ASSEMBLER MEMORY MODELS 585

@code Text _TEXT
@data+ Text DGROUP
@fardata? Text FAR_BSS
@fardata Text FAR_DATA
@stack Text DGROUP
BEGIN 4+ 4+« <« 4« « « . L Near 0000 _TEXT
DATAL+« Byte 0001 _DATA
FROG « « « « « « . . . Byte 0000 _DATA

0 Warnings
0 Errors

Example B35 lists a program that uses the large model. Notice how it differs from the small model program
of Example B—4. Models can be very useful in developing software, but often we use full-segment descriptions, as
depicted in most examples in the text.

EXAMPLE B-5

Microsoft (R) Macro Assembler Version 6.14.8444

.MODEL LARGE
.STACK 1000H

0000 .FARDATA?
0000 00 FROG DB ?
0001 0064 [DATAl DW 100 DUP (?)
0000
]
0000 .CONST
0000 54 68 69 73 20 69 MES1 DB 'This is a character string’

73 20 61 20 63 68
61 72 61 63 74 65
72 20 73 74 72 69
6E 67
001A 53 6F 20 69 73 20 MES2 DB ‘So is this!’
74 68 69 73 21

0000 .DATA
0000 000C DATA2 DW 12
0002 o0C8 [DATA3 DB 200 DUP (1)
01
1
0000 .CODE
0000 FUNC PROC FAR
0000 CB RET
0001 FUNC ENDP

END FUNC
Segments and Groups:

Name Size Length Align Combine Class

586 APPENDIXB THE ASSEMBLER, DISK OPERATING SYSTEM, AND BASIC I/0 SYSTEM

DGROUP GROUP
_batTa 16 Bit 00CcAa Word Public ‘DATA’
STACK 16 Bit 1000 Para Stack ' STACK'
CONST 16 Bit 0025 Word Public ‘CONST’ ReadOnly
EXA_TEXT . 16 Bit 0001 Word Public ‘CODE’
FAR_BSS 16 Bit 00C9 Para Private ‘FAR_BSS’
_TEXT . 16 Bit 0000 Word Public ‘CODE’
Procedures, parameters and locals:

Name Type Value Attr
FUNC . . P Far 0000 EXA_TEXT Length= 0001 Public
Symbols:

Name Type Value Attr
@CodeSize . Number 0001h
@DataSize . Number 0001h
@Interface . . Number 0000h
@Model . . . Number 000Sh
@code . Text EXA_TEXT
@data . Text DGROUP
@fardataz . Text FAR_BSS
@éfardata . . . Text FAR_DATA
@stack Text DGROUP
DATAL . Word 0001 FAR_BSS
DATA2 Word 0000 _DATA
DATA3 Byte 0002 _DATA
FROG . . Byte 0000 FAR_BSS
MES1 . Byte 0000 CONST
MES2 . Byte 001A CONST

0 Warnings
0 Errors

In order to use DOS function calls, always place the function number into register AH and load all other pertinent
information into registers, as described in the Table as entry data. Once this is accomplished, follow with an INT
21H to execute the DOS function. Example B—6 shows how to display an ASCII A on the CRT screen at the cur-
rent cursor position with a DOS function call. Table B-3 is a complete listing of the DOS function calls. Note
that some function calls require a segment and offset address, indicated as DS:DI, for example. This means the
data segment is the segment address and DI is the offset address. All of the function calls use INT 21H, and AH
contains the function call number. Note that functions marked with an @ should not be used unless DOS version
2.XX is in use. Also note that not all function numbers are implemented. As a rule, DOS function calls save all
registers not used as exit data, but in certain cases some registers may change. In order to prevent problems, it is

advisable to save registers where problems occur.

EXAMPLE B-6

0000 B4 06
0002 B2 41
0004 CD 21

AH, 6
DL, 'A’
21H

;load function 06H
;select letter ‘A’
;call DOS function

DOS FUNCTION CALLS

TABLE B-3 DOS function calls (pp. 587-608).

O00H TERMINATE A PROGRAM

Entry AH = 00H
CS = program segment prefix address

Exit DOS is entered

01H READ THE KEYBOARD

Entry AH = 01H

Exit AL = ASCII character

Notes If AL = O0H, the function call must be invoked again to read an
extended ASCII character. Refer to Chapter 7, Table 7-3 for a
listing of the extended ASCH keyboard codes. This function call
automatically echoes whatever is typed to the video screen.

02H WRITE TO STANDARD OUTPUT DEVICE

Entry AH = 02H
DL = ASCI character to be displayed

Notes This function call normally displays data on the video display.

03H READ CHARACTER FROM COM1

Entry AH = 03H

Exit AL = ASCII character read from the communications port

Notes This function call reads data from the serial communications port.

04H WRITE TO COM1

Entry AH = 04H
DL = character to be sent out of COM1

Notes This function transmits data through the serial communications port.
The COM port assignment can be changed to use other COM ports
with functions 03H and 04H by using the DOS MODE command to
reassign COM1 to another COM port.

587

588 APPENDIXB THE ASSEMBLER, DISK OPERATING SYSTEM, AND BASIC 1/0 SYSTEM

05H WRITE TO LPT1

Entry AH = 05H
DL = ASCIHI character to be printed

Notes Prints DL on the line printer attached to LPT1. Note that the line printer]
port can be changed with the DOS MODE command.

06H DIRECT CONSOLE READ/WRITE

Entry AH = 06H
DL = OFFH or DL = ASCIl character

Exit AL = ASCIi character

Notes If DL = OFFH on entry, then this function reads the console. If DL =
ASCII character, then this function displays the ASCII character on the
console (CON) video screen.
If a character is read from the console keyboard, the zero flag (ZF)
indicates whether a character was typed. A zero condition indicates
that no key was typed, and a not-zero condition indicates that AL
contains the ASCI! code of the key or a O0H. If AL = 00H, the function
must again be invoked to read an extended ASCII character from the
keyboard. Note that the key does not echo to the video screen.

07H DIRECT CONSOLE INPUT WITHOUT ECHO

Entry AH = 07H

Exit AL = ASCIl character

Notes This functions exactly as function number 06H with DL = OFFH, but it
will not return from the function until the key is typed.

08H READ STANDARD INPUT WITHOUT ECHO

Entry AH = 08H

Exit AL = ASCII character

Notes Performs as function 07H, except that it reads the standard input
device. The standard input device can be assigned as either the
keyboard or the COM port. This function also responds to a control-
break, where function 06H and 07H do not. A control-break causes
INT 23H to execute. By default, this functions as does function 07H.

DOS FUNCTION CALLS

09H

DISPLAY A CHARACTER STRING

Entry

AH = 09H
DS:DX = address of the character string

Notes

The character string must end with an ASCIl $ (24H). The character
string can be of any length and may contain control characters such
as carriage return (ODH) and line feed (OAH).

OAH

BUFFERED KEYBOARD INPUT

Entry

AH = 0AH
DS:DX = address of keyboard input buffer

Notes

The first byte of the buffer contains the size of the buffer (up to 255).
The second byte is filled with the number of characters typed upon
return. The third byte through the end of the buffer contains the
character string typed, followed by a carriage return (ODH). This
function continues to read the keyboard (displaying data as typed)
until either the specified number of characters are typed or until the
enter key is typed.

OBH

TEST STATUS OF THE STANDARD INPUT DEVICE

Entry

AH = 0BH

Exit

AL = status of the input device

Notes

This function tests the standard input device to determine if data are
available. If AL = 00, no data are available. If AL = OFFH, then data
are available that must be input using function number 08H.

OCH

CLEAR KEYBOARD BUFFER AND INVOKE
KEYBOARD FUNCTION

Entry

AH = 0CH
AL = 01H, 06H, O7H, or 0AH

Exit

See exit for functions 01H, 06H, 07H, or OAH

Notes

The keyboard buffer holds keystrokes while programs execute other
tasks. This function empties or clears the buffer and then invokes the
keyboard function located in register AL.

ODH

FLUSH DISK BUFFERS

Entry

AH = ODH

Notes

Erases all file names stored in disk buffers. This function does
not close the files specified by the disk buffers, so care must be
exercised in its usage.

589

990 APPENDIXB THE ASSEMBLER, DISK OPERATING SYSTEM, AND BASIC I/0 SYSTEM

OEH SELECT DEFAULT DISK DRIVE

Entry AH = 0EH
DL = desired default disk drive number

Exit AL = the total number of drives present in the system

Notes Drive A = 00H, drive B = 01H, drive C = 02H, and so forth.

OFH @OPEN FILE WITH FCB

Entry AH = OFH
DS:DX = address of the unopened file control block (FCB)

Exit AL = OOH if file found
AL = OFFH if file not found

Notes The file control block (FCB) is only used with early DOS software
and should never be used with new programs. File control blocks
do not allow path names as do the newer file access function codes
presented later. Figure B-2 (p. 609) illustrates the structure of the
FCB. To open a file, the file must either be present on the disk or be
created with function call 16H.

10H @CLOSE FILE WITH FCB

Entry AH = 10H
DS:DX = address of the opened file control block (FCB)

Exit AL = OOH if file closed
AL = OFFH if error found

Notes Errors that occur usually indicate either that the disk is full or the
media is bad.

11H @SEARCH FOR FIRST MATCH (FCB)

Entry AH = 11H
DS:DX = address of the file control block to be searched

Exit AL = OOH if file found
AL = OFFH if file not found

Notes Wild card characters (? or *) may be used to search for a file name.
The ? wild card character matches any character and the * matches
any name or extension.

DOS FUNCTION CALLS

12H @SEARCH FOR NEXT MATCH (FCB)
Entry AH = 12H
DS:DX = address of the file control block to be searched
Exit AL = Q0H if file found
AL = OFFH if file not found
Notes This function is used after function 11H finds the first matching file
name.
13H @DELETE FILE USING FCB
Entry AH = 13H
DS:DX = address of the file control block to be deleted
Exit AL = OOH if file deleted
AL = OFFH if error occurred
Notes Errors that most often occur are defective media errors.
14H @SEQUENTIAL READ (FCB)
Entry AH = 14H
DS:DX = address of the file control block to be read
Exit AL = O0H if read successful
AL = 01H if end of file reached
AL = 02H if DTA had a segment wrap
AL = O3H if less than 128 bytes were read
15H @SEQUENTIAL WRITE (FCB)
Entry AH = 15H
DS:DX = address of the file control block to be written
Exit AL = O0H if write successful
AL = 01H if disk is full
AL = 02H if DTA had-a segment wrap
16H @CREATE A FILE (FCB)
Entry AH = 16H
DS:DX = address of an unopened file control block
Exit AL = OOH if file created
AL = 01H if disk is full

591

592 APPENDIX B

THE ASSEMBLER, DISK OPERATING SYSTEM, AND BASIC I/0 SYSTEM

17H @RENAME A FILE (FCB)
Entry AH = 17H
DS:DX = address of a modified file control block
Exit AL = 00H if file renamed
AL = O1H if error occurred
Notes See Figure B-3 (p. 609) for the modified FCB used to rename a file.
19H RETURN CURRENT DRIVE
Entry AH = 19H
Exit AL = current drive
Notes AL = 00H for drive A, 01H for drive B, and so forth.
1AH SET DISK TRANSFER AREA
Entry AH = 1AH
DS:DX = address of new DTA
Notes The disk transfer area is normally located within the program
segment prefix at offset address 80H. The DTA is used by DOS
for all disk data transfers using file control blocks.
1BH GET DEFAULT DRIVE FILE ALLOCATION TABLE
(FAT)
Entry AH = 1BH
Exit AL = number of sectors per cluster
DS:BX = address of the media—descriptor
CX = size of a sector in bytes
DX = number of clusters on drive
Notes See Figure B—4 (p. 609) for the format of the media—descriptor byte.
The DS register is changed by this function, so make sure to save it
before using this function.
1CH GET ANY DRIVE FILE ALLOCATION TABLE (FAT)
Entry AH=1CH
DL = disk drive number
Exit AL = number of sectors per cluster

DS:BX = address of the media—descriptor
CX = size of a sector in bytes
DX = number of clusters on drive

DOS FUNCTION CALLS

21H

@RANDOM READ USING FCB

Entry

AH =21H
DS:DX = address of opened FCB

Exit

AL = O0H if read successful

AL = 01H if end of file reached

AL = 02H if the segment wrapped
AL = 03H if less than 128 bytes read

22H

@RANDOM WRITE USING FCB

Entry

AH = 22H
DS:DX = address of opened FCB

' Exit

AL = O0H if write successful
AL = 01H if disk full
AL = 02H if the segment wrapped

23H

@RETURN NUMBER OF RECORDS (FCB)

Entry

AH = 23H
DS:DX = address of FCB

Exit

AL = 00H number of records
AL = OFFH if file not found

24H

@SET RELATIVE RECORD SIZE (FCB)

Entry

AH = 24H
DS:DX = address of FCB

Notes

Sets the record field to the value contained in the FCB.

25H

SET INTERRUPT VECTOR

Entry

AH = 25H
AL = interrupt vector number
DS:DX = address of new interrupt procedure

Notes

Before changing the interrupt vector, it is suggested that the current
interrupt vector first be saved using DOS function 35H. This allows a
back-link so the original vector can later be restored.

26H

CREATE NEW PROGRAM SEGMENT PREFIX

Entry

AH = 26H
DX = segment address of new PSP

Notes

Figure B-5 (p. 609) illustrates the structure of the program segment prefix.

593

594 APPENDIXB THE ASSEMBLER, DISK OPERATING SYSTEM, AND BASIC 1/0 SYSTEM

27H @RANDOM FILE BLOCK READ (FCB)

Entry AH = 27H
CX = the number of records
DS:DX = address of opened FCB

Exit AL = O0H if read successful

AL = 01H if end of file reached

AL = 02H if the segment wrapped
AL = O3H if less than 128 bytes read
CX = the number of records read

28H @RANDOM FILE BLOCK WRITE (FCB)

Entry AH = 28H
CX = the number of records
DS:DX = address of opened FCB

Exit AL = O0H if write successful

AL = 01H if disk full

AL = 02H if the segment wrapped
CX = the number of records written

29H @PARSE COMMAND LINE (FCB)

Entry AH = 29H

AL = parse mask

DS:SI = address of FCB

DS:Di = address of command line

Exit AL = 00H if no file name characters found
AL = 01H if file name characters found
AL = OFFH if drive specifier incorrect
DS:SI = address of character after name
DS:DI = address first byte of FCB

2AH READ SYSTEM DATE
Entry AH = 2AH
Exit AL = day of the week

CX = the year (1980-2099)
DH = the month
DL = day of the month

Notes The day of the week is encoded as Sunday = 00H through Saturday =
06H. The year is a binary number equal to 1980 through 2099.

DOS FUNCTION CALLS
2BH SET SYSTEM DATE
Entry AH = 2BH
CX = the year (1980—2099)
DH = the month
DL = day of the month
2CH READ SYSTEM TIME
Entry AH =2CH
Exit CH = hours (0-23)
CL = minutes
DH = seconds
DL = hundredths of seconds
Notes All times are returned in binary form, and hundredths of seconds may
not be available.
2DH SET SYSTEM TIME
Entry AH =2DH
CH = hours
CL = minutes
DH = seconds
DL = hundredths of seconds
2EH DISK VERIFY WRITE
Entry AH = 2EH
AL = 00H to disable verify on write
AL = 01H to enable verify on write
Notes By default, disk verify is disabled.
2FH READ DISK TRANSFER AREA ADDRESS
Entry AH = 2FH
Exit ES:BX = contains DTA address
30H READ DOS VERSION NUMBER
Entry AH = 30H
Exit AH = fractional version number
AL = whole number version number
Notes For example, DOS version number 3.2 is returned asa 3in ALand a
14H in AH.

595

596 APPENDIXB THE ASSEMBLER, DISK OPERATING SYSTEM, AND BASIC 1/0 SYSTEM

31H

TERMINATE AND STAY RESIDENT (TSR)

Entry

AH = 31H
AL = the DOS return code
DX = number of paragraphs to reserve for program

Notes

A paragraph is 16 bytes, and the DOS return code is read at the
batch file level with ERRORCODE.

33H

TEST CONTROL-BREAK

Entry

AH = 33H

AL = OOH to request current control-break
AL = 01H to change control-break

DL = O0H to disable control-break

DL = 01H to enabie control-break

Exit

DL = current control-break state

34H

GET ADDRESS OF InDOS FLAG

Entry

AH = 34H

Exit

ES:BX = address of InDOS flag

Notes

The InDOS flag is available in DOS versions 3.2 or newer and
indicates DOS activity. If InDOS = 00H, DOS is inactive; or OFFH,
if DOS is active and pursuing another operation.

35H

READ INTERRUPT VECTOR

Entry

AH = 35H
AL = interrupt vector number

Exit

ES:BX = address stored at vector

Notes

This DOS function is used with function 25H to install/remove
interrupt handlers.

36H

DETERMINE FREE DISK SPACE

Entry

AH = 36H
DL = drive number

Exit

AX = FFFFH if drive invalid

AX = number of sectors per cluster
BX = number of free clusters

CX = bytes per sector

DX = number of clusters on drive

Notes

The default disk drive is DL = 00H, drive A = 01H, drive B = 02H,
and so forth.

DOS FUNCTION CALLS

38H RETURN COUNTRY CODE

Entry AH = 38H
AL = 00H for current country code
BX = 16-bit country code
DS:DX = data buffer address

Exit AX = error code if carry set
BX = counter code
DS:DX = data buffer address

39H CREATE SUBDIRECTORY

Entry AH = 39H
DS:DX = address of ASCII-Z string subdirectory name

Exit AX = error code if carry set

Notes The ASCII-Z string is the name of the subdirectory in ASCII code
ended with a O0H instead of a carriage return/line feed.

3AH ERASE SUBDIRECTORY

Entry AH = 3AH
DS:DX = address of ASCII-Z string subdirectory name

Exit AX = error code if carry set

3BH CHANGE SUBDIRECTORY

Entry AH = 3BH
DS:DX = address of new ASCII-Z string subdirectory name

Exit AX = error code if carry set

3CH CREATE A NEW FILE

Entry AH = 3CH
CX = attribute word
DS:DX = address of ASCII-Z string file name

Exit AX = error code if carry set
AX = file handle if carry cleared

Notes The attribute word can contain any of the following (added together):
01H read-only access, 02H = hidden file or directory, 04H = system
file, 08H = volume label, 10H = subdirectory, and 20H = archive bit.
In most cases, a file is created with 0000H.

597

598 APPENDIX B THE ASSEMBLER, DISK OPERATING SYSTEM, AND BASIC 1/0 SYSTEM

3DH OPEN A FILE

Entry AH = 3DH
AL = access code
DS:DX = address of ASCII-Z string file name

Exit AX = error code if carry set
AX = file handle if carry cleared

Notes The access code in AL = O0H for a read-only access, AL = 01H
for a write-only access, and AL = 02H for a read/write access.
For shared files in a network environment, bit 4 of AL = 1 will deny
read/write access, bit 5 of AL = 1 will deny a write access, bits 4 and
5 of AL = 1 will deny read access, bit 6 of AL = 1 denies none, bit 7
of AL = 0 causes the file to be inherited by child; if bit 7 of AL = 1,
file is restricted to current process.

3EH CLOSE A FILE

Entry AH = 3EH
BX = file handie

Exit AX = error code if carry set

3FH READ A FILE

Entry AH = 3FH
BX = file handle
CX = number of bytes to be read
DS:DX = address of file buffer to hold data read

Exit AX = error code if carry set
AX = number of bytes read if carry cleared

40H WRITE A FILE

Entry AH = 40H
BX = file handle
CX = number of bytes to write
DS:DX = address of file buffer that holds write data

Exit AX = error code if carry set
AX = number of bytes written if carry cleared

41H DELETE A FILE

Entry AH = 41H
DS:DX = address of ASCII-Z string file name

Exit AX = error code if carry set

DOS FUNCTION CALLS

42H

MOVE FILE POINTER

Entry

AH = 42H

AL = move technique

BX = file handle

CX:DX = number of bytes pointer moved

Exit

AX = error code if carry set
AX:DX = bytes pointer moved

Notes

The move technique causes the pointer to move from the start of the
file if AL = OOH, from the current location if AL = 01H, and from the end|
of the file if AL = 02H. The count is stored so DX contains the least-
significant 16-bits and either CX or AX contains the most-significant
16-bits.

43H

READ/WRITE FILE ATTRIBUTES

Entry

AH = 43H

AL = O0H to read attributes

AL = 01H to write attributes

CX = attribute word (see function 3CH)
DS:DX = address of ASCII-Z string file name

Exit

AX = error code if carry set
CX = attribute word of carry cleared

44H

I/0O DEVICE CONTROL (IOTCL)

Entry

AH = 44H
AL = sub function code (see notes)

Exit

AX = error code (see function 59H) if carry set

Notes

The sub function codes found in AL are as follows:

O0H = read device status
Entry: BX = file handle
Exit: DX = status
01H = write device status
Entry: BX = file handle, DH = 0, DL = device information
Exit: AX = error code if carry set
02H = read control data from character device
Entry: BX = file handle, CX = number of bytes, DS:DX = I/O
buffer address
Exit: AX = number of bytes read
03H = write control data to character device
Entry: BX = file handle, CX = number of bytes, DS:DX = I/O
buffer address

599

600 APPENDIXB THE ASSEMBLER, DISK OPERATING SYSTEM, AND BASIC I/0 SYSTEM

Exit: AX = number of bytes written
04H = read control data from block device
Entry: BL = drive number (0 = default, 1 = A, 2 = B, etc),
CX = number of bytes, DS:DX = I/O buffer address
Exit: AX = number of bytes read
05H = write control data to block device
Entry: BL = drive number, CX = number of bytes,
DS:DX = /O buffer address
Exit: AX = number of bytes written
06H = check input status
Entry: BX = file handle
Exit: AL = O0H ready or FFH not ready
07H = check output status
Entry: BX = file handle
Exit: AL = 00H ready or FFH not ready
08H = removable media?
Entry: BL = drive number
Exit: AL = O0OH removable, 01H fixed
09H = network block device?
Entry: BL = drive number
Exit: bit 12 of DX set for network block device
0AH = local or network character device?
Entry: BX = file handle
Exit: bit 15 of DX set for network character device
0BH = change entry count (must have SHARE.EXE loaded)
Entry: CX = delay loop count, DX = retry count
Exit: AX = error code if carry set
OCH = generic I/O control for character devices
Entry: BX = file handle, CH = category, CL = function
Categories: 00H = unknown, 01H = COM port, 02H =
CON, 05H = LPT ports
Function:
CL = 45H; set iteration count
CL = 4AH; select code page
CL = 4CH; start code page preparation
CL = 4DH; end code page preparation
CL = 5FH; set display information
CL = 65H; get iteration count
CL = 6AH; query selected code page
CL = 6BH; query preparation list
CL = 7FH; get display information
ODH = generic /O control for block devices
Entry: BL = drive number, CH = category, CL = function,
DS:DX = address of parameter block
Category: 08H = disk drive
Function:
CL = 40H; set device parameters
CL = 41H; write track
CL = 42H; format and verify track
CL = 46H, set media ID code
CL = 47H; set access flag
CL = 60H; get device parameters
CL = 61H; read track
CL = 62H; verify track
CL = 66H; get media ID code
CL = 67H; get access code

